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Abstract

A generalized formulation for constructing
second- and higher-order accurate TVD (total vari-
ation diminishing) schemes is presented. A given
scheme i1s made TVD by limiting antidiffusive flux
differences with some nonlinear functions,
so-called limiters. The general idea of the formu-
lation and its mathematical proof of Harten's TVD
conditions 1s shown by applying the Lax-Wendroff
method to a scalar nonlinear equation and constant-
coefficient system of conservation laws. For the
system of equations, we derive several definitions
for the argument used in the limiter function and
present their performance in numerical experiments.
Then the formulation is formally extended to the
nonlinear system of equations. It is demonstrated
that use of the present procedure allows easy
conversion of existing central or upwind, and
second-or higher-order differencing schemes so as
to preserve monotonicity and to yield physically
admissable solutions. The formulation is simple
mathematically as well as numerically; neither
matrix-vector multiplication nor Riemann solver
is required. Roughly twice as much computational
effort is needed as compared to conventional
scheme. Although the notion of TVD is based on
the initial value problem, application to the
steady Euler equations of the formulation is also
made. Numerical examples including various ranges
of problems show both time- and spatial-accuracy
in comparison with exact solutions.

Introduction

Recently several second-order, nonoscillatory
schemes have been proposed for solving hyperbolic
system of conservation laws, as a means to obtain
accurate weak solutions. (hereafter the term
"second-order accuracy" is applied only in the
region excluding point of extrema in_fluxes) See,
for example, van Leer!, HartenZ, Roe3, and Osher
and Chakravarthy?. Sweby? presented a unified
formulation in which these independently proposed
schemes boiled down to using different forms of
flux 1imiters due originally to van Leerl.

Harten? introduced the notion of TVD (total vari-
ation diminishing) and gave sufficient conditions
for a class of 5-point, explicit schemes to be
second-order accurate as well as TVD. It is easy
to show that all second- and higher-order schemes
can always be recast as a combination of some
first-order, stable scheme with higher-order terms.
The first-order scheme i1s too dissipative, espe-
cially crude in the regions of high gradients.
Consequently these higher-order terms are added to
take away excessive diffusivity, hence appropri-
ate]g called antidiffusive terms by Boris and
Book®, while maintaining stability. It is well-
known that conventional second- (or higher) order,
shock-capturing schemes produce spurious oscilla-
tions near discontinuties and generally require
considerable numerical dissipation. Thus, the
basic schemes must be altered (e.g., by 1imiting
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flux differences in our case) to meet such require-
ments as (1) yielding monotonic and sharp repre-
sentation of jumps, and (2) satisfying the entropy
condition so as to automatically select physically
relevant solutions. Van Leer! first successfully
attacked this problem and arrived at his second-
order scheme. The crux of the matter is to form a
nonlinear combination of the underlying first-order
scheme and the remaining antidiffusive terms.
Hence we view that in second- and higher-order TVD
schemes the antidiffusive terms basically play
seemingly uncompromising roles of both increasing
accuracy and diminishing the total variation. We
also remark that all TVD schemes cited above use
some form of an upwinding scheme as the underlying
first-order scheme. In this paper we apply this
principle to formulate our TVD scheme with empha-
sis on nonlinear systems of conservation laws,
namely Euler equations. This approach appears
natural and straightforward for extension to
multispace dimensions. Although rigorous mathe-
matical procedures are followed to ensure Harten's
TVD conditions, the actual implementation for
solving the multidimensional Euler equations is
quite simple and general. In numerical tests we
even carried over the same difference schemes,
proved to be TVD in the hyperbolic system,
directly to the steady Euler equations whose type
is not known. The same characteristics as that
obtained by solving unsteady equations were found.

Section 2 shows the present formulation for
the nonlinear scalar equation. The procedure fol-
lows closely to that of Sweby®, especially in
the TVD proof, but they differ in the definition
of a basic first-order scheme. The entropy con-
dition is also examined. Section 3 shows the
extension to the one-dimensional system of con-
servation laws and the corresponding TVD property
for a linearized system. Finally, a description
of the generization to the Euler equations of gas
dynamics is given in Section 4. Application to
steady equations, use of both explicit and
implicit schemes, central and upwinding differ-
ences are also included.

Second-order TVD Scheme for Nonlinear
Scalar Equation

To faciliate understanding of the present
formulation, first we consider the numerical solu-
tion of the scalar nonlinear conservation law in
one space
t >0,

o < X < o

ut + fx(u) =0,

(2.1)
u(x,0) = uo(x)

For Eg. (2.1) to be of hyperbolic type, the flux
function f(u) has a real derivative a = df/du
with characteristic curve described by dx/dt = a.

Suppose a second- or higher-order (centered
or one-sided biased) differencing scheme is given
(e.g., Eq. (2.5b)), the present formulation makes
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it TVD-satisfying by the following steps: (1)
Form a first-order, upwind differencing,

(Eq. (2.5a)); (2) Carry out subtraction of the
differencings and obtain the remaining terms,
called antidiffusive terms, (Eq. (2.6)); (3) Limit
the antidiffusive terms, (Eq. (2.7)), using the
so-called flux-1limiter function3;* and (4) Deter-
mine the bounds of the limiter from Harten's con-
ditions2, as well as specify its function forms.

The upwinding is conveniently achieved by

splitting a(u) (a is real function) into "+" and
"-" parts,

(2.2a)
where

(2.2b)

Thus the flux f
ing:

is split accordingiy by requir-

(2.3a)

+ + - -
(1) a = (f )u' a = (f )u (2.3b)
We note that how the splitting (not unique)
is done is irrelevant in the present analysis. It
is needed only if an actual calculation is made.
We also remark that Roe's flux difference splitt-
ing3 can be applied equally well, as will become
clear later.

Let us use the notation
Y3a - ()3

(2.4)
(¢ )3 =0 )5-0 J3
We now approximate fy:

(A+f' + A_f+)/Ax, first-order upwinding

—
1

(2.5a)

(A+f + 8 f)/2ax, central-differencing
(2.5b)

Subtracting Eqs. (2.5a) from (2.5b), we have the
antidiffusive term

A (AYfY - ATf-)/28x (2.6)
The flux differences a*f* are limited by assign-

ing the limiter functions ¢t and ¢-
and we write

f, = (0% + Tty /ax + AT (o A EY - o TaTET) /2ax
(2.7)

*Since it is the flux differences, rather
than fluxes themselves, that are limited, 1t might
be more appropriate to call this the flux-
difference limiter.

respectively,

It 1s noted that allowing different functions ot
and ¢~ to be associated with f* and f- 1is
essential for the proof of TVD.

Now, the integration scheme for Eq. (2.1) can
be applied. To illustrate some preliminaries of
TVD and Harten's conditions, we consider the
first-order tuler explicit scheme with the use of
upwind differencing, Eq. (2.5a). Then we have

n+1 n +o- ~et\n
= -n(af A f =
uj uj ( j + j) , A = At/ax
(2.8a)
or
+ - -+
A f Af
GO o= ety s —1aw " (2.8b)
J 3 atu 3 Ay J
3 ]
This is rewritten in a general form
n+l n + -n -+ N
uj = uj - Cj_]A uj + ch uj (2.9)

We now define the total variation of the mesh
solution u to be

) = 2 [atu (2.10)
3 3
A numerical scheme is said to be TVD if
™) < v (2.11)

Harten? gave sufficient conditions for £q. (2.9)
to be TVD.

Lemma (Harten). Let the coefficients C* and
C- in Eq. (2.9) satisfy the inequalities

¢} 20 (2.12a)
¢; 20 (2.12b)

el < 2.12
I (2-12¢)

then the scheme Eq. (2.9) is TvD.

For smooth functions ft, we have

A f

3 ot +

A+uj =ay ¢ 0(a uj)

N _ .

;:ﬁi = aj + 0(a uj)
where A+uJ = 0(Ax)

Hence Egs. (2.12a) and (2.12b) are satisfied by
£q. (2.2b) and the third inequality, €q. (2.12c)
requires




af Ay
Y By P (2.13a)
A Uj A uJ
or
A IaJ| - x(a; -ap) < (2.13b)

which 1s identical to the CFL stability condition.

Roe3d proposed another type of splitting in
which the flux differences are expressed in terms
of the mean value of the Jacobian matrix. The
Jacobian matrix (1x1 in scalar case) is required
to satisfy

(1) f(u) - f(v) = A(u,v) (u-v) (2.14a)

(11) A(u,u) = fy(u) = A(u) (2.14b)
(111) A(u,v) has real eigenvalues and a (2.14c)
complete set of eigenvectors

Roe3 has constructed a linearization of the form
Eq. (2.14a) having these properties. Harten and
tax? show that such a Roe-type linearization
exists as long as there is an entropy function.
Hence, from Eqs. (2.14) we can write

-+ + + +

A fj = f (uj) - f (uj—]) =4 (uj' UJ_])(UJ - uj~])
- a*(uj,uj_])A‘uJ (2.15)

+ - - - -

A fj = f (uj+]) - f (uJ) = a (uj, ”j+1)(uj+1 - uj)

- +
=a (uj. uj*])A ”j (2.15b)

where a*(uJ,Uj_]) >0, a~(uy,uj47) < 0. For

scalar equation Eq. (2.1), the property, Eq. (2.14c)

is clearly satisfied. Thus the TVD conditions
Eq. (2.12) can be ensured by this construction of
at and a-. This concludes the TVD consider-
ation of the first-order scheme Eq. (2.8).

Since first-order schemes contain too much
dissipation, often obscuring the physics, we wish
to convert them to TvD-satisfying, second-order
accurate (both in space and time) schemes by add-
ing 1imited antidiffusive terms. Let us consider
the one-step, Lax-Wendroff scheme

n+l n n 2 n 3
uJ = uj - Atfx + 0.5 at (afx)X + 0(At™)

(2.16)
The third term on the RHS of Eq. (2.16) is of
second-order accuracy and is considered as a part

of the antidiffusive terms. We now can apply
limiters to yield:

+ a A+f+
MA IR RAVZ 2R

- +, - 2
+ (pj+] aj+1/2A fjg/ﬁx

(afx)x = A
(2.17)

where

nrz = 3yt 2a)f2

Hence we find

n+1 n -t +.-4N
uj = uj - n(a fJ + A fj)

- 0.5 a" 3¢;<1 - kaj+1/2)A

- (1 kaj+1/2>A+f5§ BN

After rearranging, Eq. (2.18) becomes

+

+
f

NN
n+l n +
uJ = uj -A{1 +0.5]() - Xaj+]/2)¢j A-f+
J
n n
1 -2a Yor f:fi au?
- -y p)ey .- uj
Y
+ A {1 - 0.5 (1 + kaj+1/2)¢j+1
n . n
AT aAf,
- (1 +2a o — L —2) 2% (209
317273 At N 3
u
J B
The underlying idea of the above arrangement is to
separately group "+" and "-" fluxes. This turns

out to be an important step for the TVD proof.
Now let

+

A" f
+ _ 3
RN o) FURL LR SRS
J
1 - 2a I
j+1/2 1 + +
T a . wj - wj_1 (2.20a)
J-1/2 a fj
+ -
A f
- R |
¢j =2 K 1S 051+ hay,y o)
J
1+ A f,
- =172
P41 "7+ na (2.20b)

o
391/2 8*F] J

This provides us with an obvious choice for the
functional relation for the limiter function, i.e.,

w§ = w(r?) (2.21a)
where
. 2THO - My ) - AT URRCIRY?)
. ORI xaj+1/2)' I B+ 2y g )

(2.21b)




Hence Eq. (2.20) becomes

A_f+ @ +
¢y ==L+ 0.56 - xaj_1/2> e,
Au r
J J
(2.22a)
+ - -
Af ¢
- - it ]
Cj = A (— E;i 1 - 0.5(1 + Xaj+]/2) ‘Pj+] I
J A
(2.22b)

We note that Eqs. (2.19) to (2.21& are identical
in form to that obtained by Sweby?. Differences
only appear in the detail; here we use the whole a,

Combining Egqs. (2.23c) to (2.25) leads to

05<$.w>51

Next, we il1lustrate the entropy condition
with a specific example. Let f(u) = u2/2, hence

(2.26)

a = u. An obvious splitting of a gives
a~ = (u t |ul)/2 (2.27)
and
* < atu2 (2.28)
Note that since f 1s a homogeneous function of

degree 2, it is easy to see that f* have con-

rather than a* and a- in (r*, C*) and (r-, C). tinuous first derivatives. Let the initial
-+, - -+ condition
Since af /a8 u>0and (-Af /au) >0,
£qs. (2.12a) and (2.12b) are satisfied by u X <0
requiring L,
u, = (2.29a)
+ UR X >0
A N S R 2.23a '
rj AL B (2.232) and
f(u ) = f(u 2.29b
and Eq. (2.12c) leads to the condition ( L) ( R) ( )
+ o+ - The exact solutions are shown in Figs. 1.
a{f - f)
: A< (2.23b) t A t
AU
or
dx - dx .
A jal <1 (2.23¢) a U a YR
Note that in Egq. (2.23c), the TVD condition 95 =up 95= uR
£q. (2.12c) puts the same 1imit on the CFL number  dt dt
as the stability condition does. We note that > —»
Sweby5 found: (1) the CFL number must be X X
reduced to achieve the TVD conditions and (2) centered-expansion stationary shock
® < 2. The differences between the present u =-ug <0 u . =-u >0

results and Sweby's are obviously due to the dif-
ferences in formulation.

We turn now to the determination of the
bounds for the limiter functions. Allowing max-
imum diffusivity to occur only in the first-order
upwinding scheme requires

et >0

for any rt (2.24)

For all TVD schemes using limiter-type formula-
tions, an additional constraint is imposed,
(P+'=0,

rt <o (2.25)

That is, a first-order scheme reverts as flux dif-
ferences at neighboring points are of opposite
signs, i.e., at point of extrema in flux. Hence
second-order accuracy is lost locally. This
appears a price that has to be paid to make the
limiter-type scheme TVD. Recent development of
the so-called ENO(Essentially NonOscillatory)
scheme® remedies this shortcoming, but allows

some "controlled" oscillations.

Figure 1 Exact (similarity) solution of Burgers'
equation with initial conditions, Eqs. (2.29).

In the case, u_ < 0, since the expansion jump is
not physically admissable, hence centered-expansion
fans give rise to unsteady solutions. On the other
hand, the case ug > 0 allows a stationary shock
solution for t > 0. It is noted that Roe's orig-
inal flux-difference-split scheme and Murman-Cole's
scheme for transonic potential equation admit
expansion shocks. (See e.g., Harten et a1.9)

In what follows, we see the performance of
the first-order scheme Eq. (2.8) along with the
splitting Egqs. (2.27) and (2.28). Ffor calculation
purpose, we assign

-1

uj(t = 0) = (2.30)

Z

and take time step, nju | = 1.0.
(1)

Expansion, u_ = - ug < 0




(1) Expansion, u = - ug < 0

time step u

" -3 u_2 u_q ug uq uy

u u uL/2 uR/Z Up Up
2at u SuL/B 3uL/8 3uR/8 SuR/B U
3?t 89uL/128 uL/2 39uL/128 39uR/128 uR/Z 89uR/128

Clearly the scheme does not admit an expansion
shock. The expansions are centered about the
midpoint between initial jumps, x = -0.5ax, and
spread over 2n grid points at t = nat.

(1¥) Shock, u = - ug >0

time step u_2 u_] uo u]

At uL 0.5uL 0.5uR uR

2at u 0.75uL 0.75uR up

3at uL 0.688uL 0.688uR up

4at uL 0.715uL 0.715uR uR

5at uL 0.703uL 0.703uR up

SAf u 0.708uL 0.708uR uR

® u,  0.707ug 0.707ug wug

We see that the shock wave is stationary and is
represented with two interior points. In general,
both Gudonov's and Roe's schemes allow a station-
ary shock with one interior state while the
Engquist-Osher scheme admits two states. (See
also van Leer10) Since Roe's scheme also admits
expansion shocks, the Gudonov scheme stands as the
best for the representation of a stationary shock
connecting the states Eq. (2.30), at least for
f(u) = uls2,

For system of equations, the split-flux
method 1s shown to satisfy the entropy inequality?,
and is thereby capable of selecting physically
admissable solutions. A contact discontinuity,
however, will be smeared over a large extent, as
seen later in Section 4. Harten?2 suggests use
of artificial compression to further sharpen the
contact discontinuity. However some care must be
taken in a region of expansion so that entropy
condition 1s not violated, see Yee et al.ll

We now express the present TVD scheme in

terms of numerical fluxes ?511/2 in the equation
n+l n = z
uJ = uj - k(fj+1/2 - fj_1/2) (2.31)

Rewriting Eq. (2.8a), the first-order upwind

scheme yields
* -
—A+f;>/2,f = fh o f

fyare - (fjn '
(2.32)

We note that Eq. (2.32) is not the Courant-
Isacsson-Rees scheme

% +
fjﬂ/z = (fjﬂ + fJ - Iaj+1/2| A uj)/Z
(2.33)

where |aj+1/2| is a mean value given by

I /A+uj. Hence the case described by Eq. (2.29)
will give rise to aj11/2 = 0 and result in a
stationary expansion shock, violating the entropy
condition.

After some algebraic manipulation, the
second-order scheme £q. (2.19) gives

o ¢ £, atfl * et
je172 = (Fye + J-A j"“jﬂ/zA fj*ﬁjﬂ/zA fj)/z

(2.34)
where
+ -
®441/2 = ¢3(1 - “’jn/z) aTSE U "ajn/z) 2
(2.35a)
+ -
80172 =3‘Pj(] - k‘3j+1/2) * “’jn(] * “’jn/z)f/z
(2.35b)

The last two terms in Eq. (2.34) obviously contri-
bute to second-order accuracy and are the antidif-
fusion terms that also maintain TVD conditions.

Remark 1. - Note that 1 + Aaj,1/2 > 0 for
stability, hence Bj+1/2 satisfies the
inequality
1>8 >0, 1f 0<ef < 2.3
_J+]/2_' _‘Pj_ (-6)

and is of opposite sign to the third term on RHS
of £q. (2.34). Thus, it is clear that the present
and other TVD schemes share the common feature in
which the higher-order TVD procedure amounts to
adding more sophisticated antidiffusion terms to

a basic lower-order scheme which itself is a TVD
scheme.

Remark 2. - On the other hand, it is more
advantageous to think of i1t as adding diffusive
terms to an underlying higher-order, non-TVD

scheme so that TVD conditions are enforced. The
one-step Lax-Wendroff scheme defines

= LW +

fj+1/2 =6}+] + fJ - kaj+1/2A fj)/Z (2.37)
in Eq. (2.31). Rewriting Eq. (2.34) gives
= = LW *
f‘“]/2 = fj+]/2 - 3(1 - BJ”/Z) A*fj - (QJH/Z + MJ*’I/Z)A’fjg/Z

(2.38)

where it can be shown

for 0 < ¢* < 1. The last bracket in Eq. (2.38)
as substituted in fjy,9/5 - fy_7/2 1s seen to yleld
a nonlinear second-order central difference.
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in Eq. (2.34) correspond to

Remark 3. - Note that and

o
(1 - By,q/p)8"F,
(94 *+ 95,9) and Qg4 A+uj in Harten's second-
order scheme.2,1!

Remark 4. - For smooth solutions of Eq. (2.1),

we have rf o 0(|Atu|) and wt =1 + O(IAtuI).
It is easy to show that

e Lw 2

fj+1/2 j+1/2 + 0(1a"u|"™) (2.39)

hence Eqs. (2.19) or (2.38) is second-order
accurate.

Sl§tem_of Conservat1 L aws -

In this section we describe how to extend the
procedure developed for the scalar equation,
namely upwinding combined with the notion of 1im-
iters, to systems of conservation laws. To show
the extension, we will exploit the fact that in
one space dimension, the system is hyperbolic and
hence is diagonalizable. As the system is
decoupled, the mathematical procedure essentially
follows what has been described in Section 2. But
it 1s less clear as to how to define the argument
r for the limiter ¢, which is a key element in
the limiter-type schemes.

Let us consider the one-dimensional system

u, + FX(U) =0, t>0

t
(3.1)
U(x,0) = Uo(x)

Here U and F(U) are column vectors of m com-
ponents, the flux vector has a Jacobian matrix

A(U) = ——L~l (3.2)

Eq. (3.1) is rewritten as

Ut + A(U)UX =0 (3.3)

To complete the extension and the proof of TVD
for the system, we need to make the following
assumptions:

(1) A has real eigenvalues and a complete set
of eigenvectors, hence A is diagonalizable,

(2) A is constant.

Let S be a matrix, the columns of which are the
right eign evectors of A. Then

sTAs = A (3.4)

where A 1is a diagonal matrix

Ay, = a,8 1<i,j<m (3.5)

1) 17157

Since A is real, we can write

+ - + -

ay = a; +ay (3.6a)

>
n

>
I+

Inl) /2, ,A1J| = ,a1|51j (3.6b)
Consequently A is split as

A=At A (3.7a)

At o osats!

(3.7b)
We note that to arrive at the split in matrix A,
Eq. (3.7) the only condition used is that A is
diagonalizable. We have as yet made no connection
with the flux vector F.

Now let A be constant, hence S and A
are constant. From Eq. (3.2) we have

F = AU (3.8)

for any U. With the aid of Eq. (3.7), Eq. (3.8)
gives a split in F

F=F +F (3.9a)

Fr - Aty (3.9b)

Here we remark that as a result of assumption (2),
F and Ft are homogeneous functions of degree
one. On the other hand, for the nonlinear system,
specifically the Euler equations, Steger and
warming!2 need to rely upon the homogeneous
property of F to accomplish the flux splitting.

Employing the assumption (1), we define a
vector W by

sTu-w, W= {w‘: g - 1,m} (3.10)
Hence
-1
STF = AW (3.11a)
-1+ t
STFT = AW (3.11b)

Following the same procedure described in
Section 2, the spatial derivatives which appeared
in the Lax-Wendroff scheme are now approximated by

L) e )
2AX

X ax
(3.12)
and
+ +_+ - + -
(AF). = o Mgty + ean'h)

x/x 2

Ax
(3.13)

Here o are scalar functions, to be determined
later. Then we have




n+l n -+ +_-.N
Uj =Uj-x(AFj+AFJ)
- 0.5 2\ cp;(l - kAj+1/2)A+F5

ORI xAj+1/2)A+F3 n (3.14)

Letting ¢f = 0 reduces Eq. (3.14) to the Euler
explicit, first-order, upwind scheme

n+l n -t +
Uj = Uj - A Fj + A Fj

In the following proof of TvD conditions for
a system, Eq. (3.14) is considered and we will
treat Eq. (3.15) as a subset of Eq. (3.14),
although the second-order accurate TVD scheme is
really built on the first-order scheme, a point
brought out in the previous section. Premultiply-
ing Eq. (3.714) with S- and using Eqs. (3.10)
to (3.11), one gets

(3.15)

n+l n + - ~ + N
W =W, -A(A AW, + AAW
R T 3
- + + + - -+ n
~ 0. I - AA)A - I - M)A AW
0.5 Aa %wj( AL - ey WA,
(3.16)
Since A* are diagonal matrices and wj's are
scalar functions, Eq. (3.16) is a m-component
system of decoupled equations,
L n+1 e.n + -2 -+ en
(wj) = (wj) - x(a!A wj + anA wj)
- + + +
- 0.5 3”3(] - xa!)ala wj
.0 At 1< < (3.17
- ¢j+1( - haglag Wi €L <m A7)

This 1s identical to the constant-coefficient
version of the scheme of Eq. (2.19) for the non-
Tinear scalar equation if a¥ft = a*afu. Proof of
TVD however departs here from that in Section 2.
The most important thing to keep in mind is: the
transformation (decoupling) is employed merely as
a mechanism to ensure TVD, the ultimate goal is
treating the system. Therefore, in the process of
proving TvD conditions for Eq. (3.17), definitions
regarding r and eo(r) must not hinder the
transformation back to the coupled system of
Eq. (3.14).

Dropping superscript "e," Eq. (3.17) is
rewritted as

n+1 n + - n -+ n
W - C;a 3.18
Wy oo= Wy o Gy s Cyawy (3.18)
with
+ 4+
A Aw
C;_1 =ha (1 +0.5(1 - A\a) | _—i wg - wg_]
aldAw

3
(3.19a)

i ) _ a AW,
cj = (-xa ) {1 - 0.5(1 + aa) ‘PJ+'I B a_EWj ‘Pj

(3.19b)
Here the trick is: associate all term having "+"
eigenvalues with ¢* and those of "-" eigen-
values with ¢~ . Also, recognizing the fact
that the transformation is possible only for those
w connected with ag, it becomes clear that we

must redefine r for the system. An obvious
choice is
a'aw
+ 2
rj =5 (3.20a)
aAw
J
aa'w
rs = —_‘j—‘l (3.20b)
aAw
J
Eqs. (3.19) are rewritten as
(p+
¢jy = a1 w050 - na) (L= o] ) (3.210)
r
J
- - - %
Cj = (-2 ) {1 - 0.5(1 + aa) LZ7S Wi (3.21b)
3
Harten's TVD conditions Eqs. (2.12) are satisfied if
RS
¢ +
—} - wg;] =& <1 (3.22)
X
J
and
A lal <1 (3.23)
as Eq. (2.23). This completes the TVD proof for

each component of the decoupled system.

If a solution procedure for Eq. (3.1) is con-
structed for the decoupled system Eg. (3.17), we
see that the definitions of Eq. (3.20) require
knowledge of the eigenvalues and eigenvectors of
A (see Egs. (3.4), (3.5) and (3.10)). This causes
concerns not only in numerical operation counts
but also in extention to multidimensions, because
decoupling systems in multidimensions may be an
extremely complex task if possible at all. Hence,
the goal 1s to express r* 1in terms of simple
variables e.g., U or primitive variables, or pre-
ferably fluxes. The latter has the attractive
property being able to naturally reduce to the
scalar case.

We turn now to show a rational procedure to
arrive at definitions of rt for systems of
equations. Putting the superscript "&" back in
Eq. (3.20a), (r— 1is done similarly) but dropping
subscript "j", we have




3

L } +_+. 4
A AW =Tea bW, 1<t<m (3.24a)
or in matrix form
aAtaw = Rt (3.24b)

where R* 1s a diagonal matrix whose diagonal
elements are {r§{: % a1, m}. Premultiplying
both sides with S brings us back to the coupled
system,

atau = R'a*aty (3.25)

With the aid of Eg. (3.9), we can relate fluxes

to rt
+ + o+

AF  =RAF (3.26a)

or

-_+ + + _+
AF, = rQA F! ,

<<
N 1<8<m

(3.26b)

Since the signs of the flux differences are key
factor in determining the limiter function ¢, use
of norms must be ruled out. However, some kind of
sum is needed in order to include influences from
each component. Several possibilities immediately
follow from Eqs. (3.26).

(a) Zr+ 'Fy ZA (3.27a)
] + 2 + + o+
(b)zr (8°F Z(A F) (a7 Fy) (3.27b)
(c) Zr; ry 'Fy ZlA'F+ -
|3 3
(3.27¢)

The last choice mimics the Lp-norm but retains
the sign. We see that Eqs. (3.27) offer the pos-
sibility of using different weights for different
components of F. Let all components be of equal
weight, then from Eqs. (3.27) we can define:

- ZA~F;,Z AMER YA >/<A*F+, 1>
L 3
(3.28a)
=Z(A FO(a'F 7/23 N2 L aTF, et >/< I AT A
(3.28b)

A*F;!A’F; - <IA'F’I. a7F" >/<’A’F”, a'Ft >

- ;’A'F;I 8Fy

(3.28¢)
(d) 1let
r; = r' of Eq. (3.28c)
and
0, r{ <0
et ( {)]/2 r; 2o (3.28d)

where <,> denotes inner product among all m com-
ponents. Clearly, the first choice is simplest.

Now, since ¢f are scalar functions, what is
used for the scalar equation carries over automat-
ically to systems. This completes the construc-
tion of TVD scheme Eq. (3.14) for systems of con-
servation laws.

Remark 1. - As in the scalar case (Section 2),
we denote in Eq. (3.14)

+ + 29
¢y = w(rj) (3.29)

Remark 2. - In the course of developing the
present scheme, the assumption of A being con-
stant is necessary. For the nonlinear case, a
formal generalization is made. Thus, the same
integration scheme of Eq. (3.14) still applies
since it is the flux differences that are used
and no transformation is needed for evaluating r
and ¢. Hence, the present scheme is not Timited
to flux-vector sp]ittﬁngs (for example, Steger and
warming!2 and van Leer!3), the Roe- type flux
difference splittingd is equally applicable.

Remark 3. - We avoid matrix-vector multipli-
cations as needed in Harten's scheme or a Riemann-
type solver (See e.g., Osher and Chakravarthy?,
Roed), but require the calculation of "+" and "-"
fluxes. The construction of "+" and "-" flux dif-
ferences is as easy as that of A*f, the differ-
ences in whole flux. Also, the calculation
required of rt and ¢t 1is minimal once a*fi
are formed; the amount of operations in Eq. (3.14)
should be nearly twice as much as the
convenntional
non-1VD, lax-wendroff scheme(without adding addi-
tional dissipation). Also the increase in storage
varies with schemes, and is minimal for explicit
schemes.
~ Remark 4. - We can write the numerical fluxes
Fje172 for the system in the same way as the
scalar case (Section 2). 1If fact, one merely
replaces in Egs. (2.32) to (2.35) the scalar flux
with flux-vectors and a with the Jacobian matrix
A.
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11 . Equations

In this section we apply what has been
described in Section 3 toward the solutions of
Euler equations in one- and two-space dimensions.

To describe the extension, we consider the
one-dimensional equation

Up + Fy(U) = O (4.1a)
where
P pU
U=feuf, Fa| pu?+p (4.1b)
ok (pE + plu
=(y - 1) p(E - 0.5 u2) (4.1¢)

To accomplish the differencing of F* and
F~ in Eq. (3.14), we choose to use flux vector
splittings given by Steger-Warming'2 and van Leerl3,
They are written, for completeness, as follows:




(a) Steger-Warming

Let the eigenvalues of A be

2
(a;,85,35) = (u,u + ¢, u-c), ¢ =vp/p (4.2)

a:= (agi |a‘D/2' 1<2<3

Since the flux vector in Eq. (4.1) is a homogeneous
function of degree one, we have
F =AU, A = af/au

and

(4.3)

Hence, the flux is split as

t ¢
2(y - 1)a] + a,

+
Y]

1 t + +
2(y - )a]a] + 3,3, + aja,

(y - 1)a?af + 0.5 [a

where w = (3 - y)(a, + aj)c/2(y - ).

(b) wvan Leer

To circumvent the discontinuity of first der-
jvatives of F' al transition states, u = 0,
or u = *c, van leer constructs a flux-vector
splitting consisting of a polynomial of degree
two, thereby ensuring continuous first-order
derivatives.

For supersonic flow, |u] > ¢

F¥ = F, u>0
(4.5)
F- = F, u<o
For subsonic flow, |uj < ¢, let
Fr= a1 o)f/ac,
Pt
1
+ +
Foo=] F [y - Mu 4 2¢)/y (4.5b)
F Ly - Du s 2¢1272(v% - 1)

Both splittings were used in the numerical
experiments to determine their applicability to
the present TVD scheme. 1In the following, we dis-
cuss the specific problems studied.

One-Dimensional Shock Tube Proble

To test the performance of the second-order
accurate scheme Eq. (3.14), first we consider the
Sod problem with the initial condition,

(i0.0, 8.0, 0.0), x<o

(p,p,u) = (4.6)

(1.0, 1.0, 0.0), X >0

[~ N '"

Figures 2 show the comparisons of calculated and
exact solutions of pressure, density, internal
energy, and velocity; the initial condition is
also included. The Steger-Warming splitting was
used; the CFL number was 0.95 and the domain
divided equally into 200 intervals. The limiter
function was

_ min(1,r), r >0
0, r<ao

@) (4.7)

where r was defined by Eq. (3.28c). It is evi-
dent that the contact discontinuity was smeared
due to excessive diffusivity. Harten? reported
substantial improvement in the resolution of the
contact discontinuity through the addition of arti-
ficial compression. Here we show the results of
using different definitions given in Eqs. (3.28).
(Note: the definition for r-, although not given
here, can be easily gotten from Eq. (3.20b) and by
following steps Egs. (3.21) to (3.28)). The defi-
nition of Eq. (3.28a), the results of which are
shown in Figs. 3, clearly gave the best results
while the results corresponding to Eq. (3.28b)

were the poorest, displaying as evident in Fig. 4
s1ight oscillations near the contact discontinuity.
However, the shock wave and expansion waves were
predicted very well for the nonlinear system in

all cases. Next Roe's "superbee"!? was used,
max 3m1n(2r,1), m1n(r,2)2, r>20
9, = (4.8)
0, r<o

It is seen in Fig. 5 that the contact discontinuity
was further improved. But slight oscillations
occurred in the expansion region, possibly due to
the fact of using & < 2 which violates the TVD
conditions in the present formulation. We also
devised a mechanism by which a dramatic improve-
ment was observed at the contact discontinuity;
more analysis s underway and will be reported
elsewhere.

Next we tested a case involving a much
stronger shock wave with the initial data:

(500, 400, 0.0), X <o
(prpvu) =
(1.0, 1.0, 0.0), X >0

(4.9)

Figures 6 show the results calculated using

Eg. (3.28a); the shock wave as well as the expan-
sion waves were accurately predicted and monoto-
nicity was satisfied. However, the extent of
smearing at the contact discontinuity was not
acceptable. Hence, calculations with finer meshes
of 500 equal spacings were made, as seen in

Figs. 7 much better results were obtained.

The flows are described by

0
Ut + FX(U) = H(U), H{U) =|p dS/dx (4.10)
0
where S is the cross-sectional area of the
nozzle. Two nozzle shapes were considered:




S](x) = 1.398 + 0.347 tanh (0.8x - 4), 0 < x <10
(4.11a)
and
1.75 - 0.75 cos (0.2x - V)w, 0 < x <5
Sz(x) =

1.25 - 0.25 cos (0.2x -1)w, 5 < x <10
(4.11b)

Uniform grids of 100 intervals were used fin
both nozzles. In a divergent channel where the
inflow Mach number was 1.26 and the exit pressure
ratio was 0.746, the van Leer splitting Eq. (4.5)
edged Steger-Warming's in resolving the shock
wave, Fig. 8. This is related to the continuous
transition of fluxes splitting through the sonic
state inside the "numerical" shock wave. It is
more evident in the convergent-divergent channel
where the inflow Mach number and the exit pressure
ratio are 0.2395 and 0.84 respectively. Figure 9
displays clearly the "kink" at the sonic throat in
Sterger-Warming's splitting. The van Leer split-
ting performed admirably well at the throat
although the exact solution has a discontinuity in
first derivative resulting from a jump in Sy".

We also applied the same idea for construct-
ing the above-described TVD scheme, to the
MacCormack explicit method. The purpose was to
sec whether and how well the present idea worked
in a scheme where each of the predictor-corrector
steps utilizes one-sided (but not upwind) differ-
ences. The calculated results, although not
shown, were essentially identical in both nozzie
flows.

A completely different approach toward the
solution was taken: (1) Steady-state equations
were used, i.e.

Fy(U) + Gy(U) =0 (4.12)
Here the type of the equations may be no longer
hyperbolic and hence the notion of TVD is unclear;
(2) We used Newton's method to linearize the sys-
tem £q. (4.12) and obtained an implicit integra-
tion procedure, as opposed to the Lax-Wendroff
type; And finally, (3) The basic underlying scheme
used second-order upwind differencing and was con-
verted to a form similar to Eq. (3.12). For
example, the derivative of F 1is approximated by

F,o= Ja7F;

- 1| 4+ -+
X gref T [A (o3-107F3

R [ B

Without mathematical guidance, we simply
carry over the preceding formulation. However, it
is assumed that since the time-asymplote steady
solution to the unsteady equations can preserve
monotonicity, the solution to the steady equations
must also have the identical property (uniqueness
of solutions is assumed).

In one-dimensional problems, the shock wave
is aligned with a grid line and can be represented
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with a sharp profile by TVD schemes. 1In this sec-
tion we wish to test our scheme on two-dimensional
problems, in particular where the shock waves cut
across grid lines. We consider a regular reflec-
tion of an oblique shock wave from a solid surface.
Two inflow Mach numbers were tested to see the
effect of shock strength on the performance. The
inflow conditions were fully specified with free-
stream values and the conditions at the top bound-
ary were set to satisfy the shock-jump relations
with a specified shock angle. The variables at
the outflow boundary were extrapolated linearly.
At the solid wall, we let v and the gradient of
the other variables vanish. (See also ref. 11).

The first case had an incoming Mach number of
2.9 and a shock angle of 29.0 degrees; the computa-
tional domain contained 60x20 meshes equally divided
in a domain 0.0 < X < 4.0, and 0.0 < Y < 1.0.
Figures 10 show the comparisons of pressure from
different calculations with exact solutions at
Y =0 and 0.5, together with pressure contours.
The second-order upwind scheme with no added
artificial-damping displayed over-expansion and
over-compression just upstream and downstream of
the shock, thereby causing slight irreqularities
in contours near the shock wave. A1l calculations
with the present procedure did predict monotonic
transition through shock waves, but in most cases
the shock waves were smeared to a much larger
extent than in the one-dimensional problems.
definition of Eq. (3.28a) gave slightly better
representation of shock waves than Eq. (3.28c).
The best came with using van Leer's splitting and
Eq. (3.28a), showing much improved shock-wave
resolutions, perhaps as good as from the one-
dimensional cases. This might look surprising
since in the supersonic flows both splittings
should give the identical results. However, this
is true only for the x-flux F, but the y-flux G
is split differently as the transverse velocity
component is subsonic.

The

Next let us consider a strong shock wave
resulting in an overall pressure rise of a factor
of 153; the incoming Mach number was 10.0 and the
shock angle remained the same as above. We divided
the domain 0.0 < X < 5.5, and 0.0 < Y < 1.0 into
82x20 meshes with same AX as above. The van
Leer splitting was used along with definition
Eq. (3.28a). The pressure distributions and con-
tours are given in Figs 11. The pressure at
Y = 0.5 was remarkably well-behaved. However,
the monotonicity seemed lost in the surface pres-
sure, possibly due to extrapolation from the
interior solutions. Roe's "superbee" displayed
s1ightly sharper represeniation of shock waves
than the case & < 1.0, but also developed a
stronger overshoot in the surface pressure just
behind the shock wave.

Concluding Remarks
In the present paper we showed a simple and
general procedure for constructing a TVD differ-
encing scheme in which second-order accuracy was
maintained, except in regions having extrema of
fluxes. We showed that any non TVD differencings
could be converted by writing it as a first-order
upwind scheme plus remaining higher-order fluxes
differences upon which 1imiting functions were
applied so as to satisfy Harten's TVD conditions




in the nonlinear scalar equation and constant-
coefficient hyperbolic system of equations. A
mathematical proof was given and definitions of
arguments for the limiter functions derived for
the system. Generalizations to the nonlinear
Euler equations were carried out. Numerical tests
were conducted to see the performance of the pro-
posed scheme; questions regarding limiters were
investigated. We found the definition of the
argument appearing in a limiter was quite cri-
tical in getting good resolution for discontinu-
ities, but otherwise all definitions seemed to
yield monotone behavior. Further improvement in
representing a contact discontinuity was also
found possible. It has become clear to us that
more analyses can be done in the area of limiters
to achieve substantial improvements. We shall
report this in a forthcoming paper]s. It was
also demonstrated that for steady-state calcula-
tions the van Leer splitting was in all cases more
accurate than the Steger-Warming splitting.
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IN EQ. (4.6). RESULTS FROM THE SOLUTION USING EQS. (3.28a) AND (4.7),
AX = 0,05, CFL = 0.95.
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FIGURE 8. - STATIC PRESSURE DISTRIBUTION IN THE DIVERGENT NOZILE, EQ.
(4.114), M, = 1.26, RATIO OF STATIC TO TOTAL PRESSURE = 0.746.
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GURE 11. - SHOCK REFLECTION PROBLEM, STATIC PRESSURE
DISTRIBUTION AT y =0 AND y = 0.5 AND PRESSURE CON-
TOURS (MIN = 0.5, MAX = 150.0, INCREMENT = 2,25),
Moo = 10.0 AND SHOCK ANGLE = 29 DEGREES.
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